
www.theijbmt.com 49|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

Research Article Open Access

Node Classification Algorithms in Complex Networks

Using Graph Embedding

MUSTAFA MAHYOUB SAEED MOHAMMED1,SOROUSH AQA MAHDI2
Computer Science and Technology

ABSTRACT: This research introduces a novel approach to node classification in complex networks, aiming to enhance

accuracy and adaptability across diverse network applications. The Dual Autoencoder Learning Method for Attribute

Network Representation is proposed, leveraging two autoencoder channels to capture both structural and attribute

information. The first channel uses a multi-hop attention mechanism to incorporate local and global structural aspects,

while the second channel employs low-pass filtering to extract attribute information guided by structural characteristics.

The innovative fusion process integrates representations from both channels, addressing limitations in existing methods.

Experimental validation demonstrates superior performance compared to existing algorithms, highlighting the potential

of this approach to improve node classification accuracy and adaptability. This research contributes to advancing graph

embedding and node classification techniques, providing a foundation for further exploration in dynamic network

environments.

Keywords: Node Classification, Algorithms, Graph Neural Networks, Machine Learning, Complex Networks,

Representation Learning, Network embedding

I. BACKGROUND AND MOTIVATION

Node classification within complex networks is an essential task with applications spanning diverse domains such as

social network analysis, biological network analysis, and recommendation systems. The process involves assigning

nodes in a network to predefined classes or labels based on attributes, connections, or interactions, thereby facilitating

insights extraction, targeted analysis, and predictive modeling within networks [1]; [2]; [3].

Node classification holds paramount significance in network analysis across a spectrum of applications.

Properly classifying nodes in complex networks yields valuable insights, enhances predictive modeling, and empowers

decision-making processes. Accurate node classification is indispensable for network analysis and its applications across

diverse fields, including social networks, biology, and recommendation systems [4].

In recent years, algorithms rooted in graph neural networks (GNNs) have gained prominence for node

classification, capturing intricate dependencies and interactions within network data. These algorithms iteratively

update node representations by assimilating data from neighboring nodes, effectively encapsulating the network's local

and global structure. This makes GNNs especially well-suited for tasks like node classification, where both structural

and attribute information are pivotal [5].

The evolution of node classification algorithms has been profoundly impacted by the availability of extensive

network data and the progress of machine learning techniques. Researchers persist in exploring innovative approaches

that amalgamate diverse information sources and harness the unique characteristics of complex networks to elevate

classification accuracy and scalability [6].

Accurate node classification is particularly significant in social network analysis, aiding in identifying the roles

of individuals within a social structure, like categorizing users as influencers, followers, or moderators based on their

activity and connections. In biological network analysis, precise classification assists in elucidating functional

relationships and pathways. Additionally, in recommendation systems, accurate classification contributes to

personalized recommendations by inferring user preferences from their interactions [2]; [2]; [3]).

www.theijbmt.com 50|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

The impact of inaccurate node classification can be profound, leading to distorted network analysis and

misguided strategies. To address these challenges, advanced machine learning techniques, such as graph neural

networks (GNNs), have emerged, capable of capturing intricate network structures and attributes, thereby enabling

more accurate node classifications. This empowers researchers and practitioners to make informed decisions and

develop more effective strategies across various applications [7].

1.1 Research Objectives

Our research objectives encompass the exploration and integration of key concepts that contribute to the advancement

of node classification algorithms within complex networks. These objectives focus on leveraging potential information,

representation learning techniques, Dual Autoencoder Learning Method for Attribute Network Representation, and the

amalgamation of models to enhance the accuracy and robustness of node classification processes.

II. LITERATURE REVIEW

2.1 Traditional Methods for Node Classification

Traditional methods for node classification have been foundational in the field of network analysis, providing essential

understanding of node roles and relationships within complex networks, such as identifying influential nodes, detecting

communities, and uncovering patterns of interaction.These methods have laid the groundwork for subsequent

advancements, while their underlying principles remain relevant today.One of the earliest and most straightforward

approaches is the use of local network properties. In this method, nodes are classified based on their degree of centrality,

which quantifies the number of connections a node possesses. Nodes with high degrees are often considered hubs, while

those with lower degrees are seen as peripheral nodes. This method is rooted in the assumption that well-connected

nodes play crucial roles in information diffusion and network dynamics [8].

Another classic approach involves utilizing node attributes, such as age, gender, or location, for classification,

wherein classifiers are trained based on these attributes, with decision trees, support vector machines (SVMs), and naive

Bayes classifiers commonly employed in attribute-based node classification to discern patterns and relationships within

the network [9].

Community-based methods are also prevalent in traditional node classification. Nodes are classified based on

their affiliation with certain communities or clusters within the network. Algorithms like the Girvan-Newman algorithm

and modularity optimization aim to identify densely connected groups of nodes, and nodes are then classified according

to the communities they belong to. This approach is particularly effective in capturing group dynamics and identifying

roles within substructures [10].Furthermore, label propagation methods are widely used in traditional node

classification. These methods propagate labels through the network based on local connections and label similarities.

The idea is that nodes with similar attributes or connections are likely to share the same label. The process is iterative,

refining labels as information spreads through the network [11].

While these traditional methods have paved the way for network analysis, they often face limitations when

dealing with the complexity and dynamics of real-world networks. In response, modern approaches, such as graph

neural networks (GNNs), have emerged to address these challenges by incorporating more sophisticated techniques for

capturing both structural and attribute information.

2.2 Introduction to Representation Learning-Based Approaches and Their Advantages

Representation learning-based approaches have revolutionized the field of network analysis by offering powerful tools

for understanding complex relationships within networks. These approaches seek to convert raw network data into

meaningful and informative representations that capture underlying patterns and structures.By learning compact and

expressive representations, they enable more effective analysis, visualization, and prediction in various

applications.Representation learning is a sophisticated process involving the transformation of nodes within a network

into low-dimensional vector spaces, where each dimension encapsulates specific aspects of the node's characteristics or

interactions. This dimensionality reduction serves not only for visualization but also enhances various downstream

tasks such as link prediction, node classification, and community detection. Numerous representation learning

techniques have emerged, each possessing distinct strengths and advantages.

www.theijbmt.com 51|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

A notable technique within representation learning is network embedding. Exemplified by methods like

node2vec [11] and DeepWalk [3], network embedding draws inspiration from word embeddings in natural language

processing. These methods generate node embeddings by simulating random walks on the network, learning

embeddings based on encountered node sequences. This approach ensures nodes with analogous structural roles are

closely embedded in the vector space, effectively capturing both local and global network structures.

Graph neural networks (GNNs) constitute another class of representation learning methods that have garnered

considerable attention. GNNs extend neural network architectures to directly process graph-structured data, offering a

versatile and powerful approach to representation learning in complex networks. Their ability to capture intricate

relationships and dependencies within graph structures contributes to their increasing significance in the evolving

landscape of representation learning techniques. They operate by aggregating information from neighbouring nodes

and edges, iteratively updating node representations. GNNs have demonstrated remarkable capability in capturing

complex interactions, hierarchical structures, and transitive dependencies within networks [2]. They have been

successfully applied in tasks like node classification, link prediction, and graph classification.

The advantages of representation learning-based approaches are multifaceted:

1. Information Fusion: These approaches seamlessly integrate both structural and attribute information, enabling

a holistic view of nodes and their relationships. This fusion of information enhances the quality of learned

representations.

2. Non-Linearity: Representation learning techniques can capture non-linear relationships among nodes, which

are often missed by traditional linear methods. This allows for more accurate modeling of intricate network

behaviors.

3. Scalability: Many representation learning methods, particularly GNNs, are designed to scale effectively to

large networks. Their ability to process large-scale data makes them well-suited for real-world applications.

4. Generalizability: Learned representations can be transferred to new tasks or domains, minimizing the need for

extensive retraining. This generalizability is particularly valuable in scenarios with limited labeled data.

5. Interpretable Embeddings: Some methods provide interpretable embeddings, allowing researchers to analyze

and understand the factors contributing to node relationships and behaviors.

6. Improved Downstream Tasks:Enhanced node representations correlate with better outcomes in tasks like link

prediction, node classification, and community detection.

As networks grow in complexity and size, representation learning-based approaches continue to evolve, addressing

challenges related to scalability, heterogeneity, and dynamic networks. These techniques hold promise in enhancing our

understanding of diverse networks and enabling more accurate and robust analyses.

2.3 Skip-Gram Network Embedding (SNE)

2.3.1 Explanation of the Skip-Gram model for representation learning

In recent years, notable progress in natural language processing tasks is largely credited to the widespread utilization of

deep learning structures and improved word representations [4]; [13][14]. In pursuit of refining the overall capacity and

simplifying the intricacies of language models, a prevalent strategy involves representing words using dense vectors. In

this scheme, words with similar meanings are encoded by vectors that exhibit similarity in their arrangements [15][16].

Among the various approaches for such representations, one method that has gained extensive popularity is

word2vec, an abbreviation for Word-to-Vector. The widespread adoption of this technique can be attributed to two

primary factors: its computational efficiency and its capability to capture intriguing analogical relationships present in

the language [17]. Notably, systems built upon the foundation of word2vec representations consistently yield substantial

enhancements in performance. This underlines the profound impact that word2vec-based systems have on augmenting

the outcomes of various language-related tasks.

According to Kipf and Welling [2], the skip-gram model employed by word2vec can be elucidated as follows:

Imagine we have a text training corpus with 𝑇 words: 𝑤1,⋯ ,𝑤𝑇 .The provided dataset serves as the foundation for

constructing a lexicon, designated as 𝒟 = 𝑤1,⋯ ,𝑤𝑊 ,. This lexicon organizes words according to their prevalence

within the dataset, with the arrangement reflecting their respective frequencies. For every term 𝑤 present in the lexicon

www.theijbmt.com 52|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

𝒟, two distinct vector representations are allocated: the input vector, often referred to as word embedding 𝑣𝑤 , and the

output vector, known as context embedding 𝑣𝑤
′ , These vectors are generated randomly, drawing from a normal

distribution, as elucidated by Sen in 2008 [18]. This process ensures the creation of unique and initially arbitrary vector

representations for each term in the lexicon, forming the basis for subsequent computational operations and analyses.

These embeddings allow the computation of the conditional probability, 𝑝 𝑤𝑂 ∣ 𝑤𝐼 , using the Softmax

function, which quantifies the likelihood between any pair of words 𝑤𝐼 and 𝑤𝑂 in the lexicon 𝒟. This approach

establishes a foundational framework for analyzing semantic relationships within the corpus:

𝑝 𝑤𝑂 ∣ 𝑤𝐼 =
exp⁡ 𝑣𝑤𝑂

′ 𝑇𝑣𝑤𝐼

  𝑊
𝑤=1  exp⁡ 𝑣𝑤′ 𝑇𝑣𝑤𝐼

, …………………………. . (i)

The skip-gram model aims to maximize, where 𝑣 ′𝑇 denotes the transformation of vector 𝑣 ′, and 𝑣 ′𝑇𝑣 represents the inner

product of the vectors 𝑣 ′ and 𝑣:

𝐸 =
1

𝑇
  

𝑇

𝑡=1

  

−𝑐≤𝑗≤𝑐,𝑗≠0

log 𝑝 𝑤𝑡+𝑗 ∣ 𝑤𝑡 . ………………………… . . (ii)

The expression pertains to the radius of the context window with the center removed at 𝑤𝑡 , denoted by the variable 𝑐.

It is important to highlight that in our notation, we employ 𝑝 to denote the estimated probability derived from

the vectors, deviating from the conventional skip-gram model literature notation, which typically uses just 𝑝. In the

following sections, we will thoroughly examine the analysis of both the estimated probability, denoted as 𝑝 , derived

from the vectors, and the ground truth probability represented as 𝑝, extracted from the training corpus. This

differentiation in notation is made in anticipation of upcoming discussions where we will delve into the nuances and

implications of these probability estimates.

Since the computational complexity of formula (i) is considerable, involving 𝒪(𝑊) inner products and

exponentials, researchers often opt not to directly apply it in practical scenarios. Instead, simplified iterations of formula

(1) find widespread use in various applications, as observed in the works of Ahmed [19] and Sen [18]. The adoption of

these simplified versions allows for more efficient computational processes, rendering the model more feasible and

applicable to real-world situations.

However, Mikolov et al. [20] introduced an efficient and effective method for approximating 𝑝 𝑤𝑂 ∣ 𝑤𝐼 . Rather

than computing 𝑤=1
𝑉  exp 𝑣𝑤𝑇

′ 𝑣𝑤𝐼 across the entire vocabulary, they used 𝑘=1
𝐾  exp⁡ 𝑣𝑤𝑘

′ 𝑇𝑤𝐼 as an approximation. This

involves randomly selecting words 𝑤1,𝑤2 ,⋯ ,𝑤𝐾 from the distribution 𝑃(𝑤),𝑤𝑕𝑒𝑟𝑒𝐾 is approximately

2 − 5𝑓𝑜𝑟𝑙𝑎𝑟𝑔𝑒𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠𝑎𝑛𝑑5− 20 for smaller ones. The preferred distribution 𝑃(𝑤) is the

𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑈(𝑤)𝑟𝑎𝑖𝑠𝑒𝑑𝑡𝑜𝑡𝑕𝑒𝑝𝑜𝑤𝑒𝑟of 3/4, denoted as 𝑃(𝑤) = 𝑈(𝑤)3/4/𝑍..

Thus, to maximize log⁡𝑝 𝑤𝑂 ∣ 𝑤𝐼 , the goal is to maximize 𝑣𝑤𝑂
′ 𝑇𝑣𝑤𝐼 and minimize 𝑘=1

𝐾  exp⁡ 𝑣𝑤𝑘
′ 𝑇𝑣𝑤𝐼 ,. This

is why the terms 𝑤1 ,𝑤2 ,⋯ ,𝑤𝐾 are referred to as negative samples. Additionally, in practical applications, the

exponential function is often substituted with the sigmoid function 𝜎(𝑥) =
1

1+exp ⁡(−𝑥)
 to prevent underflow. In summary,

Mikolov et al. [21] aim to maximize this expression:

log 𝜎 𝑣𝑤𝑂
′ 𝑇𝑣𝑤𝐼 +  

𝐾

𝑘=1

𝔼𝑤𝑘∼𝑃 𝑤 log𝜎 −𝑣𝑤𝑘
′ 𝑇𝑣𝑤𝐼 , …………………………. . (iii)

for 𝑤𝐼 = 𝑤𝑡 and 𝑤𝑂 = 𝑤𝑡+𝑗 in the formula (ii).

Utilizing Formula (iii) on word embeddings establishes the foundational language model for neural network

training. Notably, the skip-gram model, particularly when incorporated with negative sampling (SGNS), produces

highly significant and meaningful results, enhancing the efficacy of the language model. Utilizing pre-trained word

www.theijbmt.com 53|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

embeddings from models employing SGNS not only demonstrates high performance across various NLP tasks but also

reveals intriguing analogical relationships [3].

Conversely, by examining Formula (iii), it becomes evident that the technique of negative sampling itself lacks

any mystical properties; rather, it offers a straightforward and efficient means to approximate the conditional

probability 𝑝 𝑤𝑡+𝑗 ∣ 𝑤𝑡 .. Our assertion is that the effectiveness of the SGNS model can be attributed to the interplay of

the skip-gram algorithm and the preference for dense vector embeddings over one-hot vectors when representing

words. By employing Formula (iii), the skip-gram model facilitates the convergence of embedding vectors associated

with words sharing similar contexts in the vector space. This synergy between the skip-gram algorithm and the use of

dense vector embeddings enhances the model's capacity to capture nuanced semantic relationships among words,

ultimately contributing to its overall efficacy.This convergence facilitates the encapsulation of semantic information and

analogical relationships within the distribution of vectors, contributing to the model's capacity to capture nuanced

linguistic nuances and improve the overall quality of word embeddings.

2.3.2 Learning Rules and Relationships in the Skip-Gram Model

Within this section, our objective is to gain a comprehensive understanding of how the skip-gram model learns from the

provided data. Our methodology initiates by formulating the gradient equation for both input and output vectors,

offering a detailed examination of the intricate relationships existing between the skip-gram model and the competitive

learning mechanisms at play. By unraveling the gradient equations, we aim to shed light on the intricate dynamics that

govern the learning process of the skip-gram model, thereby providing valuable insights into its underlying

mechanisms.This exploration delves into the underlying dynamics of how the model adapts and refines its

representations through the learning process, shedding light on the interplay between input and output vectors and

their crucial role in shaping the model's understanding of the intricate relationships within the given dataset.

𝑊𝑒𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑡𝑕𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑔𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐸𝑖𝑛𝑎𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑤𝑎𝑦𝑎𝑠𝑓𝑜𝑙𝑙𝑜𝑤𝑠:

𝐸 =
1

𝑇
  

𝑇

𝑡=1

   

−𝑐≤𝑗≤𝑐,𝑗≠0

 log⁡𝑝 𝑤𝑡+𝑗 ∣ 𝑤𝑡

=
1

𝑇
  

𝑇

𝑡=1

   

−𝑐≤𝑗≤𝑐,𝑗≠0

  𝑣𝑤𝑡+𝑗

′𝑇 𝑣𝑤𝑡 − log⁡  

𝑊

𝑤=1

 exp⁡ 𝑣𝑤
𝑇𝑣𝑤𝑡

=
1

𝑇
  

𝑇

𝑡=1

   

−𝑐≤𝑗≤𝑐,𝑗≠0

  𝑣𝑤𝑡+𝑗

′𝑇 𝑣𝑤𝑡 − 2𝑐log⁡  

𝑊

𝑤=1

 exp⁡ 𝑣𝑤
′𝑇𝑣𝑤𝑡

…………(𝑖𝑣)

𝐹𝑜𝑟𝑎𝑓𝑖𝑥𝑒𝑑𝑤𝑜𝑟𝑑𝑤𝑠𝑖𝑛𝑡𝑕𝑒𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦, 𝑡𝑕𝑒𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑜𝑓𝑖𝑡𝑠𝑖𝑛𝑝𝑢𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑤𝑠𝑐𝑎𝑛𝑏𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑎𝑠:

∂𝐸

∂𝑣𝑤𝑠,𝑖

=
1

𝑇
  

𝑇

𝑡=1,𝑤𝑡=𝑤𝑠

   
𝑐≤𝑗≤𝑐,𝑗≠0

  𝑣𝑤𝑡+𝑗 ,𝑖

′ −
  𝑊
𝑤=1  exp⁡ 𝑣𝑤

′𝑇𝑣𝑤𝑡 𝑣𝑤𝑖
′

  𝑊
𝑤=1  exp⁡ 𝑣𝑤′𝑇𝑣𝑤𝑡

=
1

𝑇
  

𝑇

𝑡=1,𝑤𝑡=𝑤𝑠

   
𝑐≤𝑗≤𝑐,𝑗≠0

  𝑣𝑤𝑡+𝑗 ,𝑖

′ −  

𝑊

𝑤=1

 
exp⁡ 𝑣𝑤

′𝑇𝑣𝑤𝑠

  𝑊
𝑤 =1  exp⁡ 𝑣𝑤

′𝑇𝑣𝑤𝑠
𝑣𝑤𝑖

′

=
1

𝑇
  

𝑇

𝑡=1,−𝑐≤𝑗≤𝑐,𝑤𝑡=𝑤𝑠

   
𝑗≠0
 ind

  𝑣𝑤𝑡+𝑗 ,𝑖

′ −  

𝑊

𝑤=1

  𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤𝑖
′ .

…………(𝑣)

𝐻𝑒𝑛𝑐𝑒, 𝑡𝑕𝑒𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑓𝑜𝑟𝑡𝑕𝑒𝑒𝑛𝑡𝑖𝑟𝑒𝑖𝑛𝑝𝑢𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑣𝑤𝑠𝑐𝑎𝑛𝑏𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑙𝑖𝑘𝑒𝑡𝑕𝑖𝑠:

www.theijbmt.com 54|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

∂𝐸

∂𝑣𝑤𝑠
=

1

𝑇
  

𝑇

𝑡=1,−𝑐≤𝑗≤𝑐,𝑤𝑡=𝑤𝑠

  𝑣𝑤𝑡+𝑗

′ −  

𝑊

𝑤=1

 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤
′

=
1

𝑇
  

𝑇

𝑡=1,𝑤𝑡=𝑤𝑠

   
−𝑐≤𝑗≤𝑐,𝑗≠0,𝑤𝑡+𝑗=𝑤

  𝑣𝑤
′ −  

𝑊

𝑤 =1

 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤
′

=
1

𝑇
  

𝑇

𝑡=1,𝑤𝑡=𝑤𝑠

   
−𝑐≤𝑗≤𝑐

𝑗≠0,𝑤𝑡+𝑗=𝑤

  1− 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤
′ −  

𝑊

𝑤 =1,𝑤 ≠𝑤

 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤
′

…………(𝑣𝑖)

𝑇𝑕𝑖𝑠𝑚𝑒𝑎𝑛𝑠𝑡𝑕𝑎𝑡𝑡𝑕𝑒𝑤𝑜𝑟𝑑𝑎𝑡𝑡𝑕𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡+ 𝑗 in the training data is the same as the 𝑤𝑜𝑟𝑑𝑤 in the vocabulary 𝑤𝑕𝑒𝑛𝑤𝑡+𝑗 =

𝑤.

The primary objective of the skip-gram model is to maximize the average log probability denoted as 𝐸.

Although, in practical implementations, researchers commonly use gradient descent to minimize −𝐸 for programming

convenience, a comprehensive theoretical understanding demands the application of gradient ascent concerning

∂𝐸/ ∂𝑣𝑤𝑠 to augment 𝐸 within our learning rule. Therefore, the learning rule governing the update of the input vector

𝑣𝑤𝑠 is explicitly defined as follows. This formulation establishes a theoretical basis for comprehending how the skip-

gram model optimizes the log probability and iteratively refines the input vectors throughout the learning process. This

theoretical foundation provides valuable insights into the underlying mechanisms through which the skip-gram model

enhances its performance and refines its representation of input vectors over successive iterations.

𝑣𝑤𝑠
new = 𝑣𝑤𝑠

old +
𝜂

𝑇
  

𝑇

𝑡=1,−𝑐≤𝑗≤𝑐
𝑤𝑡=𝑤𝑠

  
𝑗≠0,𝑤𝑡+𝑗=𝑤

 1− 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤
′ −  

𝑊

𝑤 =1,𝑤 ≠𝑤

 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤
′ …………(𝑣𝑖𝑖)

The parameter 𝜂 represents the learning rate in the context.

In simple terms, when a vector 𝑏 is added to another vector 𝑎 , the latter moves in the direction of 𝑏 or

experiences a reduction in the angle between them. Conversely, 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔𝑣𝑒𝑐𝑡𝑜𝑟𝑏 𝑓𝑟𝑜𝑚𝑣𝑒𝑐𝑡𝑜𝑟𝑎 (i.e. 𝑎 − 𝑏) causes 𝑎

to move away from 𝑏 , 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑡𝑕𝑒𝑎𝑛𝑔𝑙𝑒 between the 𝑡𝑤𝑜𝑣𝑒𝑐𝑡𝑜𝑟𝑠.Upon scrutinizing

𝑡𝑕𝑒𝑡𝑒𝑟𝑚𝑠𝑤𝑖𝑡𝑕𝑖𝑛𝑡𝑕𝑒𝑙𝑎𝑟𝑔𝑒𝑏𝑟𝑎𝑐𝑘𝑒𝑡𝑜𝑓𝑓𝑜𝑟𝑚𝑢𝑙𝑎 (4), it is evident that both the term 1 − 𝑝 𝑤 ∣ 𝑤𝑠 and each 𝑝 𝑤 ∣ 𝑤𝑠 are

consistently positive, given that 0 < 𝑝 𝑤 ∣ 𝑤𝑠 < 1 for any word 𝑤. In essence, this implies that, on an intuitive level, the

vector 1 − 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤
′ is is added to 𝑣𝑤𝑠 , while vectors 𝑝 𝑤 ∣ 𝑤𝑠 𝑣𝑤

′ for all 𝑤 ≠ 𝑤 are subtracted from 𝑣𝑤𝑠 .

Consequently, during gradient ascent, the input vector 𝑣𝑤𝑠 tends to move towards the output vector 𝑣𝑤
′ corresponding

to the word 𝑤 present in the context window of 𝑤𝑜𝑟𝑑𝑤𝑠. Simultaneously, the gradient ascent causes

𝑣𝑤𝑠𝑡𝑜𝑚𝑜𝑣𝑒𝑎𝑤𝑎𝑦𝑓𝑟𝑜𝑚𝑎𝑙𝑙𝑜𝑡𝑕𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑠𝑣𝑤
′ except for 𝑣𝑤

′ .

This mechanism introduces a distinctive form of competitive learning. When a word 𝑤 emerges in the context

of the word 𝑤𝑠, it engages in competition with all other words to draw the input vector 𝑤𝑠 toward its designated output

vector 𝑣𝑤
′ . It is essential to underscore a noteworthy contrast between the gradient ascent employed in the skip-gram

model and the conventional winner-takes-all (WTA) algorithm typically associated with competitive learning.In the

skip-gram model, the competitive learning process involves words vying for influence over the input vector based on

their contextual associations. Unlike the conventional winner-takes-all approach, where only the most influential

element claims dominance, the skip-gram model employs a more nuanced mechanism. Multiple words can contribute to

the adjustment of the input vector, reflecting a collaborative influence rather than a singular winner. This distinction

underscores the sophistication and adaptability of the skip-gram model's competitive learning strategy in capturing the

intricate relationships between words and their contexts.

In the context of backpropagation in the winner-takes-all (WTA) paradigm, a distinctive feature is the setting of

gradients for all losing neurons to zero, leading to a situation colloquially described as "the winner takes all while the

losers stand still" [20]. Contrasting this with the gradient ascent mechanism employed in the skip-gram model, the

dynamics for the non-winning neurons (comprising all words 𝑤 ˜ other than 𝑤) take a more challenging turn. These

non-winning words not only fail to advance their positions but actively contribute to pushing the input vector 𝑣𝑤𝑠 away

www.theijbmt.com 55|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

from their respective output vectors𝑣𝑤
′ . In essence, the competitive learning rule governing input vector updates in the

skip-gram model can be encapsulated as "the winner strengthens its advantage, while the losers experience an even

more pronounced setback." This distinction highlights the contrast in outcomes between WTA's backpropagation, where

losing neurons remain static, and the skip-gram model's gradient ascent, where non-winning words play a role in

actively displacing the input vector from their associated output vectors. The nuanced nature of this competitive

learning rule contributes to the skip-gram model's ability to refine word embeddings and capture intricate semantic

relationships in a dynamic manner.

This distinctive approach in the skip-gram model's competitive learning mechanism underscores the nuanced

dynamics of how the model refines its representations. Unlike the WTA algorithm's winner-takes-all approach, where

losing neurons remain static, the skip-gram model's losers actively contribute to pushing the input vector away from

their associated output vectors. This nuanced interplay enhances the model's adaptability, fostering a more dynamic and

responsive learning process.

The application of 𝑆𝐺𝑁𝑆𝑎𝑙𝑖𝑔𝑛𝑠𝑤𝑖𝑡𝑕𝑜𝑢𝑟𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠: 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔𝑓𝑜𝑟𝑚𝑢𝑙𝑎 (3) involves optimizing

𝑡𝑕𝑒𝑖𝑛𝑛𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑣𝑤𝑂
′𝑇 𝑣𝑤𝐼 , simultaneously minimizing the 𝑖𝑛𝑛𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝑣𝑤𝑘

′𝑇 𝑣𝑤𝐼 for all words 𝑤𝑘 . This signifies that the

𝑖𝑛𝑝𝑢𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑣𝑤𝐼 corresponding to the word 𝑤𝐼 is drawn closer to the output vector 𝑣𝑤𝑂
′ , when the word 𝑤𝑂 is part of the

context of 𝑤𝐼. At the same time, 𝑣𝑤𝐼 is 𝑝𝑢𝑠𝑕𝑒𝑑𝑎𝑤𝑎𝑦𝑓𝑟𝑜𝑚𝑡𝑕𝑒𝑜𝑢𝑡𝑝𝑢𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑠𝑣𝑤𝑘
′ ,, 𝑤𝑕𝑒𝑟𝑒𝑤𝑘 represents

𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤𝑜𝑟𝑑𝑠(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠). Essentially, the 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠 serve to simulate all "loser" words 𝑤 ≠

𝑤𝑂. As it is impractical to compute 𝑝 𝑤 ∣ 𝑤𝐼 for all words 𝑤 other than 𝑤𝑂, SGNS randomly selects a subset of words to

act as "losers," enabling the differentiation of the winning word 𝑤𝑂[10].

As a result of the gradient ascent update, the input vector 𝑣𝑤𝑠 undergoes a progressive alignment with the

output vectors 𝑣𝑤
′ corresponding to words w present in the context of 𝑤𝑠, Simultaneously, it diverges from the output

vectors 𝑣𝑤
′ associated with words 𝑤 not present in the context. This dynamic mechanism facilitates the capture of

semantic information by strategically positioning embedding vectors within the vector space, a concept well-supported

by previous studies [13]; [14]. The evolving alignment and divergence contribute to the model's ability to discern and

represent nuanced semantic relationships.

Likewise, in the case of 𝑎𝑛𝑜𝑢𝑡𝑝𝑢𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑣𝑤𝑠
′ , 𝑡𝑕𝑒𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑜𝑓𝐸 with respect to each of its dimensions is expressed as:

∂𝐸

∂𝑣𝑤𝑠,𝑖
′

=
1

𝑇
  

𝑇

𝑡=1

   
−𝑐≤𝑗≤𝑐,𝑗≠0,𝑤𝑡+𝑗=𝑤𝑠

 𝑣𝑤𝑡,𝑖
 − 2𝑐

exp⁡ 𝑣𝑤𝑠
𝑇 𝑣𝑤𝑡 𝑣𝑤𝑡,𝑖

  𝑊
𝑤 =1  exp⁡ 𝑣𝑤

𝑇𝑣𝑤𝑡

=
1

𝑇
  

𝑇

𝑡=1

  𝑛𝑡,𝑐,𝑤𝑠
⋅ 𝑣𝑤𝑡 ,𝑖

− 2𝑐 ⋅ 𝑝 𝑤𝑠 ∣ 𝑤𝑡 ⋅ 𝑣𝑤𝑡 ,𝑖

=
1

𝑇
  

𝑇

𝑡=1

  𝑛𝑡,𝑐,𝑤𝑠
− 2𝑐 ⋅ 𝑝 𝑤𝑠 ∣ 𝑤𝑡 𝑣𝑤𝑡,𝑖

…………(𝑖𝑥)

Within this context, 𝑛𝑡,𝑐 ,𝑤𝑠
 signifies the frequency of occurrences of the word 𝑤𝑠 within a window of radius-c, excluding

the central word 𝑤𝑡 . Much like the gradient of the input vector 𝑣𝑤𝑠 , the term 𝑝 𝑤𝑠 ∣ 𝑤𝑡 represents an estimation of the

conditional probability 𝑝 𝑤𝑠 ∣ 𝑤𝑡 derived from the existing set of vectors 𝑣𝑤 , 𝑣𝑤
′
𝑤=1

𝑊
. Consequently, the all-

encompassing gradient formula for the entire output vector 𝑣𝑤𝑠
′ can be articulated as follows:

∂𝐸

∂𝑣𝑤𝑠
′

=
1

𝑇
  

𝑇

𝑡=1

 𝑛𝑡,𝑐,𝑤𝑠
− 2𝑐 ⋅ 𝑝 𝑤𝑠 ∣ 𝑤𝑡 𝑣𝑤𝑡 . …………(𝑥)

This formula integrates the information regarding the frequency of word occurrences in the specified context

window, along with the estimated conditional probability based on the current set of vectors. It provides a

comprehensive expression for the gradient of the output vector, encapsulating the interplay of contextual information

and the model's estimation of conditional probabilities in the learning process. This gradient formula serves as a crucial

www.theijbmt.com 56|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

element in the optimization process, guiding the adjustments of output vectors to enhance the overall performance of

the skip-gram model.

Consequently, the rule for updating the output vector 𝑣𝑤𝑠
′ through gradient ascent is as follows:

𝑣𝑤𝑠
new = 𝑣𝑤𝑠

old +
𝜂

𝑇
  

𝑇

𝑡=1

 𝑛𝑡,𝑐,𝑤𝑠
− 2𝑐 ⋅ 𝑝 𝑤𝑠 ∣ 𝑤𝑡 𝑣𝑤𝑡 .…………(𝑥𝑖)

Examining formula (5) reveals that the softmax definition 𝑝 𝑤𝑠 ∣ 𝑤𝑡 = exp⁡ 𝑣𝑤𝑠
′𝑇 𝑣𝑤𝑡 / 𝑤 =1

𝑊  exp⁡ 𝑣𝑤
′𝑇𝑣𝑤𝑡

implies that 𝑝 𝑤𝑠 ∣ 𝑤𝑡 will generally be small (less than 10−3) for most word pairs 𝑤𝑠 ,𝑤𝑡 . The typical window size 𝑐

ranges from 3 to 5, meaning that multiplying 2𝑐 will not significantly increase 2𝑐 ⋅ 𝑝 𝑤𝑠 ∣ 𝑤𝑡). As a result, the expression

𝑛𝑡,𝑐,𝑤𝑠
− 2𝑐 ⋅ 𝑝 𝑤𝑠 ∣ 𝑤𝑡 will typically yield a positive value when the word 𝑤𝑠 appears within the context window of 𝑤𝑡 ,

given that 𝑛𝑡,𝑐,𝑤𝑠
 is at least one in such instances. Conversely, if 𝑤𝑠 is absent from the context window of 𝑤𝑡 , 𝑛𝑡,𝑐,𝑤𝑠

 will be

zero, causing the expression 𝑛𝑡,𝑐,𝑤𝑠
− 2𝑐 ⋅ 𝑝 𝑤𝑠 ∣ 𝑤𝑡 to be negative.

In essence, when the word 𝑤𝑡 = 𝑤 at position 𝑡 in the training corpus encompasses 𝑤𝑠 within its context

window, it effectively "attracts" the output vector v_(w_s)^' of the word w_s towards its own input vector 𝑣𝑤𝑡 = 𝑣𝑤

Conversely, when 𝑤𝑠 is not present in the context window of 𝑤𝑡 , the word 𝑤𝑡 = 𝑤 must actively "repel"𝑣𝑤𝑠
′ ^' away from

its own input vector 𝑣𝑤 . This dynamic mirrors a competitive learning process, where each word 𝑤𝑡 = 𝑤 in the training

corpus competes with others to influence the movement of the output vector 𝑣𝑤𝑠
′ ^' towards its own input vector

𝑣𝑤𝑡 = 𝑣𝑤 . Failing to do so results in the word w_t=w losing in this competition, causing 𝑣𝑤𝑠
′ ^' to move away from 𝑣𝑤 .

This competitive learning rule aligns with the principle of "winners capitalize on their gains, while losers experience

further losses."As a consequence, words with 𝑤𝑠 in their context window emerge victorious in influencing the output

vector, while those without 𝑤𝑠 in their context window face defeat, leading to a dynamic and adaptive adjustment of the

model's parameters during the learning process.Failure to do so results in the word 𝑤𝑡 = 𝑤 losing in this competition,

leading to 𝑣𝑤𝑠
′ moving away from 𝑣𝑤 . This competitive learning rule follows the principle of "winners capitalize on their

gains, while losers experience further losses." Consequently, words with 𝑤𝑠 in their context window emerge victorious,

whereas those without 𝑤𝑠 in their context window face defeat.

Upon revisiting formula (3), it becomes evident that in each training step, there exists only one distinct input

vector 𝑣𝑤𝐼 . Consequently, the role played by 𝑤𝐼 should be perceived as "multifaceted": it emerges as the "victor" in

relation to the actual word 𝑤𝑂, yet it assumes the position of the "defeated" entity when compared to all the negatively

sampled words [22]. It is crucial to recognize that the competitive learning mechanism dictating the modification of the

output vector in the skip-gram model undergoes a notable transformation in the Skip-Gram with Negative Sampling

(SGNS). In more straightforward terms, SGNS introduces a bias towards the input vectors, diverging from the

theoretical expectation that the roles of input and output vectors in the skip-gram model should be comparable, as

proposed by Mnih and Hinton in 2009 [23].

In essence, while the skip-gram model typically maintains a symmetrical treatment of input and output vectors

in competitive learning, SGNS introduces a departure from this symmetry by exhibiting a bias towards the input

vectors. This shift in the competitive learning mechanism has implications for how the model adapts and refines its

representations during training. The theoretical anticipation of input and output vector equality in skip-gram is

challenged by the introduced bias in SGNS, emphasizing the need to consider the nuanced variations between these two

approaches for a comprehensive understanding of their respective dynamics and performance implications.

2.4 Self-Coding Model for Node Classification

In the realm of node classification within complex networks, self-coding models have emerged as a novel and promising

approach. These models fundamentally revolve around the concept that nodes within a network inherently encode

valuable information about themselves and their local interactions. Self-coding approaches prioritize the examination of

a node's immediate neighborhood, emphasizing the importance of considering both the structural connections and

attributes of neighboring nodes for classification tasks [24]. While these models hold significant promise in their ability

to leverage intrinsic node properties for classification, they also face potential limitations and challenges.

Self-coding models place great emphasis on the encoding of information within each node, treating them as

self-contained entities. This approach allows the models to effectively capture the unique features, characteristics, and

www.theijbmt.com 57|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

context of individual nodes within the network [25]. By doing so, self-coding models aim to unveil the intricate

structural dependencies within the network, including the propagation of information, influence dynamics, and the

diffusion of attributes [29]. However, one potential limitation of self-coding models lies in their reliance on local

neighborhood information. While this approach enables them to capture fine-grained details of node interactions, it may

also limit their ability to capture global network properties and long-range dependencies. Additionally, self-coding

models may face challenges in dealing with noisy or incomplete data, as they heavily rely on the information encoded

within individual nodes. Noise or missing information in node attributes or connections could lead to inaccuracies in

classification outcomes and hinder the model's performance. Moreover, the computational complexity of self-coding

models may pose challenges, particularly for large-scale networks, requiring substantial computational resources and

time for training and inference. Thus, while self-coding models offer promising avenues for node classification in

complex networks, addressing these limitations and challenges is crucial to realizing their full potential in practical

applications.

2.4.1 Utilization of Dynamic Network Characteristics

Dynamic network characteristics play a pivotal role in self-coding models, enabling them to adapt to the evolving nature

of network structures and node behaviors. These dynamic characteristics are harnessed in several key ways:

Temporal Information: Self-coding models thoughtfully incorporate temporal aspects, such as the timing of interactions

or updates to node attributes. This incorporation allows the models to discern and account for temporal dependencies

between nodes. It further aids in distinguishing between short-term and long-term effects within the network, thereby

contributing to more nuanced and context-aware node classification [5].

Dynamic Embeddings: Dynamic network characteristics underpin the generation of dynamic node embeddings that

evolve alongside the network. These embeddings are instrumental in capturing the changing roles and positions of

nodes, facilitating more precise node classification. They are particularly adept at representing the evolving nature of

network relationships and behaviors [30].

Influence Propagation: Self-coding models leverage dynamic network characteristics to model influence propagation

and information diffusion. This modeling is vital for understanding the persistent impact of influential nodes over time.

Such nodes may continue to exert influence on their neighbors, and self-coding models adeptly account for these lasting

effects, thereby enhancing the accuracy of node classification [24].

Adaptive Learning: Adaptability is a hallmark of self-coding models. These models employ adaptive learning

mechanisms that fine-tune their representations and predictions as the network undergoes changes. This adaptability

ensures that the models remain relevant and effective in dynamic network scenarios, where structures and behaviors are

in a constant state of flux [26].

Self-coding models in node classification offer a research-driven avenue for comprehending the dynamic

complexities of complex networks. These models excel at encoding node information, considering local interactions, and

harnessing dynamic network characteristics. Consequently, they hold the promise of delivering more accurate, context-

aware, and adaptable node classification methodologies, particularly in environments where network structures and

node behaviors exhibit temporal evolution.

2.5 Encoder Gated Recurrent Unit (ENGRU)

The Encoder Gated Recurrent Unit (ENGRU) is an innovative algorithm that integrates the principles of self-coding and

Recurrent Neural Networks (RNNs). To understand ENGRU's significance, it's essential to first delve into the

fundamentals of RNNs, particularly Gated Recurrent Units (GRUs)[11].

2.5.1 Recurrent Neural Networks (RNNs) and GRUs

Recurrent Neural Networks (RNNs) belong to the domain of artificial neural networks, specifically designed to handle

sequential data processing. Renowned for their prowess in tasks involving sequences, such as time series analysis and

natural language processing, RNNs excel in capturing dependencies and patterns over time. Their utility extends to

www.theijbmt.com 58|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

dynamic network analysis, showcasing their effectiveness in unraveling intricate relationships and evolving patterns

within dynamic systems [11].

RNNs feature a distinctive architecture that enables them to retain memory of previous inputs, rendering them

well-suited for tasks where context and temporal dependencies are pivotal. In the realm of dynamic network analysis,

where interactions and connections among entities evolve over time, the inherent sequential processing capabilities of

RNNs render them invaluable. Their aptitude for capturing temporal dependencies fosters a deeper understanding of

the evolving nature of networks, positioning RNNs as a beneficial choice for analyzing and modeling dynamic systems.

A significant challenge encountered in training conventional RNNs is the issue of vanishing gradients, which

impedes the networks' capacity to capture long-range dependencies in sequences. Gated Recurrent Units (GRUs) were

introduced as a remedy to address this problem. GRUs represent a subtype of RNN architecture that incorporates gating

mechanisms to regulate information flow within the network. These gates, comprising reset and update gates, empower

GRUs to selectively retain or discard information from previous time steps. This selective mechanism enhances their

ability to model long-range dependencies more effectively compared to traditional RNNs [27].

2.5.2 Description of the ENGRU Algorithm

The Encoder Gated Recurrent Unit (ENGRU) algorithm represents an innovative integration of self-coding principles

with the power of RNNs, specifically GRUs. ENGRU leverages the capabilities of both self-coding and RNNs to enhance

node classification in dynamic networks. Here's an overview of the ENGRU algorithm:

1. Node Self-Coding: ENGRU begins by encoding each node's attributes and structural information, treating

nodes as self-contained entities similar to self-coding models. This encoding is essential for capturing the

unique characteristics of each node within the dynamic network [7].

2. Sequential Information: ENGRU incorporates the sequential nature of dynamic networks. It considers the

temporal evolution of the network by processing nodes and their encoded information sequentially over time.

This temporal aspect is a critical element for capturing the dynamic changes in network structures and

behaviors [19].

3. GRU Integration: ENGRU employs Gated Recurrent Units (GRUs) to model the temporal dependencies within

the dynamic network. GRUs are well-suited for this task due to their ability to capture long-range

dependencies while avoiding vanishing gradient issues. The GRUs serve as the temporal processing units

within ENGRU [27].

4. Dynamic Embeddings: Through the integration of self-coding and GRUs, ENGRU generates dynamic node

embeddings. These embeddings evolve over time, capturing the changing roles and positions of nodes within

the dynamic network. The dynamic embeddings are instrumental for accurate and context-aware node

classification [31].

5. Adaptive Learning: ENGRU's adaptive learning mechanisms ensure that the model remains relevant and

effective as the network evolves. It dynamically adjusts its representations and predictions to accommodate

changing network structures and behaviors [28].

The Encoder Gated Recurrent Unit (ENGRU) algorithm represents a sophisticated fusion of self-coding principles and

the power of Gated Recurrent Units (GRUs). By combining self-coding's ability to capture node-specific information

with the temporal modeling capabilities of GRUs, ENGRU offers a potent approach for node classification in dynamic

networks. This integration enables accurate, context-aware, and dynamic node classification, making ENGRU a

promising algorithm for a wide range of applications in dynamic network analysis.

III. RESEARCH METHOD

3.1 Introduction

In this section, we describe the research methodology used for the implementation and evaluation of the Representation

Learning Method employing Dual Autoencoders. Representation learning is a key aspect of machine learning, and Dual

Autoencoders have shown promising results for learning meaningful representations from complex data structures.

www.theijbmt.com 59|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

This section explains the experimental framework that we adopted for applying Dual Autoencoders in the context of

representation learning and assessing their effectiveness.

3.2 Conceptual Framework and Symbolic Representation

The first step of our research methodology is to explain the essential concepts related to the problem domain. We

establish the mathematical framework that supports the design of our model, which involves selecting the appropriate

algorithms and parameters for our representation learning method. We introduce the Attribute Network Representation

Learning, a core component of our research paradigm, which aims to learn low-dimensional vector representations of

nodes in attribute networks by combining structural and attribute information.

3.3 Data Preprocessing

The next step of our research methodology is to focus on data preprocessing, which is crucial for ensuring the quality

and robustness of our representation learning method. We use four real-world datasets from different domains, namely

Cora, Citeseer, Pubmed, and wiki, which are publicly available and widely used for network representation learning

tasks. These datasets consist of networks of nodes with various attributes and labels, representing scientific papers,

blogs, or users. We preprocess the data by normalizing the attribute values, removing isolated nodes, and splitting the

data into training, validation, and test sets. We also optimize the model’s objective function, which consists of two terms:

a reconstruction loss that measures the fidelity of the learned representations, and a regularization loss that encourages

the representations to be smooth and discriminative.

3.4 Experimental Implementation and Analysis

The final step of our research methodology is to conduct experiments to evaluate the performance of our representation

learning method. We use the experimental method as it allows us to test the real-world applicability of our model and to

identify potential challenges and limitations that may not be captured by mathematical analysis or simulation-based

approaches.

In the following sections, we provide more details on each aspect of our experimental implementation and

analysis, and we discuss the main findings and implications of our experiments. Through this systematic presentation,

we aim to offer a comprehensive understanding of the principles and practicalities involved in applying Dual

Autoencoders for representation learning within the scope of our research.

IV. RESULTS

4.1.1 Network Representation using Dual Autoencoders and Attribute Information

To provide a clear understanding of the model and algorithm being proposed, this paper begins by defining relevant

concepts and the primary symbolic representations used in the algorithm. The main symbols are listed below.

Table 1: Symbolic Notations and Their Meanings in Attribute Network Representation with Dual Autoencoders

www.theijbmt.com 60|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

In practical scenarios, real-world networks often manifest as graph structures, encompassing diverse examples like

social networks, citation networks, and more. Within these tangible networks, nodes typically possess a set of associated

attribute information, effectively constituting attribute vectors. For instance, in the context of social networks, a node

corresponds to a user, and the attributes linked to this user may encompass details such as gender, age, location, and

their network connections. Consequently, in the realm of network representation learning research, a network

characterized by nodes enriched with diverse attribute information is commonly referred to as an "attribute network."

An attribute network can be conceptualized as 𝐺 = (𝑉, 𝐸, 𝐴),, where 𝑉 is the set of nodes 𝑉 = 𝑣1 , 𝑣2,⋯ , 𝑣𝑛 , and

𝑛 is the total number of nodes. The network encompasses edges (𝐸) and attributes (𝐴), providing a comprehensive

framework for understanding the relationships and characteristics within the network.𝐸 signifies the collection of

neighboring edges connecting these nodes, 𝐸 = 𝑒𝑖𝑗 . 𝐴, on the other hand, designates the set of node attributes,

𝐴 = 𝑎1 , 𝑎2 ,⋯ , 𝑎𝑚 , with m representing the number of attributes. The measure of attribute similarity between nodes

 𝑣𝑖 , 𝑣𝑗 is determined by evaluating the resemblance between the attribute vector 𝑥𝑖 of node 𝑣𝑖 and the attribute vector

𝑥𝑗 of node 𝑣𝑗 . This assessment provides insights into the level of similarity in attributes between any given pair of nodes

in the network.

In the process of representation learning for an attribute network, the fusion of the adjacency matrix and

attribute matrix yields the ultimate low-dimensional representation vectors for nodes. These vectors serve as enriched

inputs for machine learning algorithms, enabling effective handling of various network analysis tasks, including but not

limited to node clustering and link prediction. This integration of attribute-based representations enhances the model's

ability to discern patterns and relationships within the network, fostering more accurate and insightful analyses.

To express the concept of attribute network representation learning symbolically, for a given attribute network,

we aim to acquire a mapping function denoted as 𝑓: 𝑣𝑖 → 𝑣𝑗 ∈ 𝑌
𝑑 , where '𝑖' belongs to the set of nodes, 𝑉. The mapping

function described is intricately tied to the structural and attribute features of individual nodes, where 'd' denotes the

dimensionality of the resulting representation vector for each node. This connection emphasizes that the final

representation of nodes is influenced by both the structural and attribute aspects, capturing a comprehensive view of the

node's characteristics in the designated vector space.

Figure 1: Node Classification in Attribute Networks using Machine Learning

Figure 1 illustrates how machine learning can be used to classify nodes in attribute networks based on their connections

and attributes. The figure consists of five steps:

 Step 1: An attribute network is shown, where each node has a color-coded attribute and is connected to other

nodes by edges.

 Step 2: The attribute network is converted into two matrices: an adjacency matrix that represents the

connections between nodes, and an attribute matrix that shows the attributes of each node.

 Step 3: Both matrices are transformed into a representation vector, which captures the essential information

from the matrices in a compact form.

www.theijbmt.com 61|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

 Step 4: The representation vector is fed into a machine learning model, which performs various tasks such as

node clustering, link prediction, and community discovery.

 Step 5: The outcomes of the machine learning model are displayed, such as the clusters of nodes with similar

attributes, the predicted links between nodes, and the communities of nodes that share common characteristics.

First-order proximity in a network refers to the local pairwise closeness between two vertices. When considering vertices

𝑣𝑖 and 𝑣𝑗 , first-order proximity between them is established if there is a direct edge connecting them, with the weight 𝑒𝑖𝑗

of the edge quantifying this proximity. Conversely, if there is no direct edge between the two vertices, there is no first-

order proximity.

Besides, direct connections between vertices are relatively sparse in real-world networks. Consequently, even when two

vertices exhibit significant similarities, their first-order proximity is nullified if they lack a direct connection. This

omission presents a challenge, as these vertices are excluded from similarity assessments. Therefore, relying solely on

first-order proximity is insufficient for preserving the structural integrity of the network.

To overcome this limitation, higher-order proximity becomes essential. This concept revolves around gauging

the similarity in neighborhood network structures between vertices, acting as a crucial supplement to first-order

proximity. It plays a pivotal role in preserving the overall structure of the network. If we represent the first-order

proximity vector between vertex 𝑣𝑖 and all other vertices as 𝑁𝑖 = 𝑒𝑖,1, 𝑒𝑖,2 ,⋯ , 𝑒𝑖,𝑛 , the higher-order proximity between

vertices 𝑣𝑖 and 𝑣𝑗 hinges on the similarity between their respective 𝑁𝑖 and 𝑁𝑗 vectors. This approach extends the analysis

beyond immediate neighbors, capturing more nuanced structural relationships within the network for a more

comprehensive understanding.

4.1.2 Method for Learning Representations with Dual Autoencoders

This study builds upon Dual Autoencoders for Attribute Network Representation Learning (DANRL). It examines how

the structure of a network and the traits of its nodes influence each other. To do this, it uses a dual-channel autoencoder

setup that looks at both the network's structure and its attributes. One channel focuses on the structure, using the

network's connections to determine relationships between nodes. It includes a mechanism that considers information

from distant neighbors, aiding in understanding both local and global network structures. This helps create a vector

representation that captures the complex relationships within the network.

In the other channel, the autoencoder works on attributes, using both node traits and network connections to

create a filter. This filter gathers information from nearby nodes to build an attribute representation vector connected to

the network's structure. The dual autoencoders then combine this information and feed it into a decoder to reconstruct a

matrix representing the network's features. During training, node pairs are selected based on their similarity or

dissimilarity, and both the structural and attribute encoders are trained together using a monitored loss function.

Figure 2: Attribute Network Reconstruction using Adjacency and Attribute Matrices

www.theijbmt.com 62|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

Diagram 2 shows how an attribute network can be reconstructed using two matrices: an adjacency matrix that captures

the connections between nodes, and an attribute matrix that represents the attributes of each node. The diagram consists

of the following steps:

 Step 1: An attribute network G is given, where each node has a specific attribute indicated by a colored bar, and

is connected to other nodes by edges.

 Step 2: The attribute network G is converted into two matrices: an adjacency matrix that shows the presence or

absence of edges between nodes, and an attribute matrix Xi that displays the attributes of each node in a tabular

form.

 Step 3: The adjacency matrix is processed by a component called K-order neighbor, which analyzes the

connections between nodes up to a certain distance (K). The output of this component is then passed to another

component called 2-order neighbor, which further analyzes the connections between nodes up to a distance of

2. The output of this component is then fed into a softmax function, which normalizes the values and produces

a vector yiM.

 Step 4: The attribute matrix Xi is processed by a component called H-filter, which filters out the irrelevant or

noisy attributes and produces another vector yiX.

 Step 5: Both vectors yiMand yiX are inputted into two decoders, labeled as (a) and (b), respectively. These

decoders are responsible for reconstructing or processing the vectors further. The final outcomes of the

decoders are not shown in the diagram.

4.1.3 Enhancing Network Structure and Attribute Information Processing for Complex Attribute Networks

The network's inherent complexity poses several challenges, including cases where nodes lack first-order proximity yet

exhibit similarities in network structures, and where the attribute data encompass diverse types. Furthermore, issues

like missing or incomplete attribute information for some nodes further complicate the network analysis. As a result,

this study commences with a comprehensive preprocessing of both node structure and attribute information.

In the context of attribute networks, the adjacency matrix functions as a comprehensive record of the first-order

proximity, delineating the relationships and connections between nodes within the network. This matrix encapsulates

the immediate associations and structural links, providing a fundamental representation of the network's

connectivity.However, it's worth noting that first-order proximity primarily captures local network structures and may

not fully represent similarities, especially when nodes share similar neighborhood structures without direct edges

connecting them. For instance, in social-network communities, individuals may have common neighbors without direct

connections. Hence, depending solely on first-order proximity is inadequate. To address this limitation, we leverage the

column vector of the adjacency matrix to portray local structural information. Employing multi-hop attention-weighted

summation, we extend our approach to encompass second-order neighbor information, enhancing the model's ability to

capture more nuanced and intricate structural relationships within the network.

Node attribute information typically encompasses various data types, often without inherent size or order

distinctions. Furthermore, there is no direct link between each attribute. To tackle this complexity, this study undertakes

a unique encoding of attribute information, followed by the fusion of these encoded representations into the attribute

vector representation of each node.As an illustration, consider node 𝑣𝑖; its attribute representation vector is denoted as

𝑎𝑖 , where 𝑎𝑖𝑗 , signifies the encoded attribute vector associated with node 𝑣𝑖,, and the symbol ⊕ denotes the merging or

concatenation process.

Hence we have

𝑎𝑖 = 𝑎𝑖1 ⊕𝑎𝑖2 ⊕𝑎𝑖3 ⊕…⊕𝑎𝑖𝑚 (𝑥𝑖𝑖)

To handle the challenge of missing or incomplete attribute information, traditional methods often resort to statistical

approaches like imputation using mean or mode values. Another common method entails implementing a random

adjustment mechanism, which introduces adjustments to input samples by randomly assigning missing attribute

information of specific nodes to zero within the input vector.While these methods provide simplicity and transparency,

they often neglect the structural intricacies of nodes, introducing biases during the integration of network information.

This oversight highlights the need for more sophisticated methods that consider both attribute imputation and

structural relationships within the network for a more accurate representation of node attributes.

www.theijbmt.com 63|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

Therefore, in this study, we propose a novel approach that integrates the first-order proximity of node

structures with the node attribute matrix. This integrated framework facilitates the imputation of missing attribute

information for nodes based on the attributes of their first-order neighboring nodes, thereby incorporating structural

considerations into the imputation process.

Our study addresses the complex challenges posed by attribute networks by proposing a novel framework that

integrates structural proximity with attribute information to handle missing or incomplete attribute data. By considering

both structural relationships and attribute imputation, our approach offers a more accurate representation of node

attributes in complex networks.

4.1.4 Structural Autoencoder

The structural autoencoder module, designed for unsupervised network representation learning, primarily focuses on

the reconstruction of the adjacency matrix. To adeptly capture the intricate, nonlinear structural features of the network

at both local and global levels, our approach incorporates a graph attention mechanism. This mechanism facilitates the

learning of significance weights assigned to nodes and their respective neighbors, allowing for the aggregation of

weighted message-passing processes. By leveraging this attention mechanism, the model enhances its ability to capture

subtle structural nuances within the network, contributing to more effective representation learning.

Moreover, to augment the model's capability, the geometric distances between nodes are intricately computed

in the peripheral Euclidean space of the embedding space. This supplementary computation contributes to a more

comprehensive understanding of the structural relationships among nodes, facilitating a richer representation that

incorporates both topological and geometric aspects within the network.Subsequently, these geometric distances

undergo a sorting process, allowing for the incorporation of information pertaining to nodes that exhibit geometric

proximity to one another into the aggregation operation.

Incorporating the graph attention layer into the learning process serves as a pivotal step in emphasizing the significance

of comprehending neighboring nodes in the network.

eij = attn yi
M , yj

M = 𝜎 𝜇 ⋅ 𝑊 1 xi
M ⊕𝑊 1 xj

M (𝑥𝑖𝑖𝑖)

In this context, the notation attn⁡(⋅) signifies the presence of an attention layer, while 𝜇 and 𝑊(1) represent the

parameters that undergo a learning process. The symbol ⊕ denotes the operation of vector splicing, and eij corresponds

to the measure of importance assigned to the features of node 𝑣𝑗 concerning node 𝑣𝑖. To facilitate a straightforward

comparison of the importance weight coefficients across nodes, a normalization procedure is employed on eij using the

softmax function as follows;

𝛾𝑖𝑗 = Softmax 𝑗 eij =
exp eij

  𝑘∈𝑁𝑖
 exp eik

=
exp Re𝐿𝑈 𝜇 ⋅ 𝑊 1 𝐱i

M ∥ 𝑊 1 𝐱j
M

  𝑘∈𝑁𝑖
 exp Re𝐿𝑈 𝜇 ⋅ 𝑊 1 xi

M ∥ 𝑊 1 𝐱k
M

 (𝑥𝑖𝑣)

Incorporating information not only from the neighboring nodes directly connected by edges but also from nodes

without direct edge connections, we apply a process known as multi-hop attention to propagate information through

the graph. This process involves computing attention scores for multi-hop neighbors, which are determined based on

the matrix M. where;

M =  

𝑘

𝑖=0

𝜃𝑖M
𝑖 where  

𝑘

𝑖=0

𝜃𝑖 = 1 and 𝜃𝑖 > 0 (𝑥𝑣)

Herein, 𝜃𝑖 represents the attenuation factor for attention weights, while M𝑖 characterizes the length of the path between

nodes, effectively expanding the reach of nodes within the acceptance domain. This domain involves nodes that share

geometric proximity in the peripheral Euclidean space. We introduce a unique differential twisting function, which

considers both node distance and node "proximity" within this peripheral Euclidean space. The function is designed to

www.theijbmt.com 64|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

capture the nuanced relationships between nodes, incorporating both spatial proximity and geometric features for a

more comprehensive understanding of the network structure.

𝜌 =
1

n(𝑛 − 1)
  

𝑖≠𝑗

𝑑M xi , xj

𝑑ℰ xi , xj
=

1

n(𝑛 − 1)
  

𝑖≠𝑗

𝑑M xi , xj

  𝑛
𝑖=1   xi − xj

2
 (𝑥𝑣𝑖)

Here, 𝑑M xi , xj denotes the proximity distance measure in a non-Euclidean space, while 𝑑𝜀 𝐱i , x𝐣 represents the distance

between nodes in the peripheral Euclidean space. The parameter ρ acts as the "trade-off" factor between these two

distances. A smaller ρ indicates a constrained trade-off between the non-Euclidean and Euclidean aspects, thereby

emphasizing the preservation of node proximity information and geometrically similar node details. This parameter

allows for a flexible adjustment, enabling the model to prioritize either the non-Euclidean or Euclidean characteristics

based on the specific requirements of the network representation learning task.

Ultimately, the features of neighboring nodes located within the acceptance domain undergo weighting and summation:

Yi
M =  

𝑘∈M

 𝛾𝑖𝑘 ⋅ Yk
M + 𝛾𝑖𝜀 ⋅ Y𝜀

M (𝑥𝑣𝑖𝑖)

Following the process of adaptive decoding, we acquire the representation of structural embeddings.

4.1.5 Attribute Autoencoder

The attribute autoencoder is a key component in the network representation learning framework, tailored to capture

intricate and highly nonlinear attribute information associated with nodes. During the attribute learning phase, the

encoder engages in feature mapping of the original node attributes within the network. To mitigate the influence of

high-frequency noise in the node attributes, a Laplace smoothing filter is employed. This filter aids in generating

embedded representations for these attributes, facilitating the extraction of essential patterns and nuanced information

within the node attributes.Following this, the structural representation and attribute representation are judiciously

combined, promoting interactive learning and maintaining coherence between them. This integration process

culminates in the reconstruction of the node attribute matrix. To assess the smoothness of the attribute vector x within

the graph, the initial step involves calculating the Rayleigh entropy with respect to both the graph Laplacian matrix

L(L = D −M) and the attribute vector 𝑥:

𝑅 L, x =
xT Lx

xT x
 (𝑥𝑖𝑥)

and

xT Lx = xT Dx − xT Mx

=  

𝑖

  x2 𝑣𝑖 𝑑𝑖 −  

𝑖

   

𝑗

 Mi𝑗x 𝑣𝑖 x 𝑣𝑖

=
1

2
  

𝑖

 x2 𝑣𝑖 𝑑𝑖 − 2  

𝑖

   

𝑗

 M𝑖𝑗 x 𝑣𝑖 x 𝑣𝑗 +  

𝑗

  x2 𝑣𝑗 𝑑𝑗

=
1

2
  

𝑖

   

𝑗

 Mij xi − xj
2

 (𝑥𝑥)

This implies that neighboring nodes are expected to exhibit similar attribute values, and the greater the similarity, the

smoother the attributes should appear. The outcome of the Rayleigh entropy computation yields the eigenvalue 𝐿, and

the solution for 𝑥 within the realm of 𝑅(L, x) corresponds to the eigenvector of 𝐿.

The traditional Laplace smoothing filter is conventionally defined as:

H = I − 𝑘L (xxi)

www.theijbmt.com 65|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

The resulting filtered attribute vector, denoted as 𝑥̃, is as follows:

x = Hx = I − 𝑘L x =  

𝑛

𝑖=1

 1− 𝑘𝜆𝑖 𝑝𝑖𝜇𝑖 =  

𝑛

𝑖=1

𝑝𝑖
′𝜇𝑖

′ (𝑥𝑥𝑖𝑖)

Here, 𝜇i represents the eigenvector of 𝐿, and 𝑝𝑖 signifies the corresponding coefficient of the eigenvector.

The attribute vector matrix, following t-layer Laplacian filtering, can be expressed as 𝑋 = 𝐻𝑡𝑋.

In practical network analysis tasks, a symmetric normalized graph Laplacian matrix is typically employed. This involves

utilizing 𝐷̃ and 𝐿̃, which represent the degree matrix and the Laplace matrix, respectively, concerning the matrix 𝑀̃.

M = I + M (xxiii)

L = D −
1

2LD−
1

2

 (𝑥𝑥𝑖𝑣)

As a result, the Laplace matrix is given by:

H = I − 𝑘L (𝑥𝑥𝑣)

For selecting appropriate values of 𝑘, we consider the maximum eigenvalues of 𝐿̃, denoted as 𝜆𝑚 , 𝑘 = 1/𝜆𝑚 . In the

subsequent sections involving task evaluation and result analysis, we showcase the impact of different k values on the

experimental outcomes.

In this research, we measure the similarity of attribute information between each pair of nodes within the attribute

matrix after the application of smoothing and filtering, using cosine similarity calculations. The obtained similarity data

between nodes is then recorded as follows:

S𝑖𝑗
X = Cos Sim X =

xixj
T

 xi ∣ xj ∣
 (𝑥𝑥𝑣𝑖)

To analyze the distribution of shared attributes among different nodes, we initially identify the existence of directly

connected edges between pairs of nodes using the adjacency matrix derived from the original network. Subsequently,

we execute attribute encoding vector multiplications within the attribute matrix to discern the common attributes

between two nodes. Similar to the structural encoder, this component of the encoder incorporates multiple layers of

nonlinear functions.

4.1.6 Model Optimization

Within this study, the optimization objective function of the model is formulated as a concurrent optimization of both

the reconstruction error associated with the structural autoencoder and that of the attribute autoencoder. The

optimization loss function is articulated as follows:

𝐿loss = 𝐿str + 𝐿attr = min  

𝑛

1

 ∥∥yi
M − yi∥∥2

2
+  

𝑚

1

 ∥∥yi
X − yi∥∥2

2
 (𝑥𝑥𝑣𝑖𝑖)

Derived from the aforementioned elucidation of the model's constituent elements, we can construct a description of the

DANRL algorithm, which is presented in Algorithm 1.

Algorithm 1: DANRL Algorithm

Input:

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐺= (𝑉, 𝐸, 𝐴), 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑚𝑎𝑡𝑟𝑖𝑥𝑀, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑚𝑎𝑡𝑟𝑖𝑥𝑋, 𝑓𝑖𝑙𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟𝑠𝑡;

www.theijbmt.com 66|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

Output: Node representation matrix 𝑌;

1. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑛𝑜𝑑𝑒𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑤𝑒𝑖𝑔𝑕𝑡𝑒𝑖𝑗𝑓𝑟𝑜𝑚 (1).

2. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑓𝑟𝑜𝑚 (2).

3. 𝑓𝑜𝑟𝑛 = 2,3,… , 𝑛𝑑𝑜

4. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑛𝑑𝑡𝑤𝑖𝑠𝑡𝜌𝑓𝑟𝑜𝑚 (4).

5. 𝑒𝑛𝑑𝑓𝑜𝑟;

6. 𝑂𝑏𝑡𝑎𝑖𝑛𝑛𝑜𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑦𝑖
𝑀 ;.

7. 𝑂𝑏𝑡𝑎𝑖𝑛𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛𝐿̃𝑓𝑟𝑜𝑚 (11).

8. 𝑘 ← 1/𝜆𝑚 ;

9. 𝐺𝑒𝑡𝑓𝑖𝑙𝑡𝑒𝑟𝑚𝑎𝑡𝑟𝑖𝑥𝐻𝑓𝑟𝑜𝑚 (12).

10. 𝐺𝑒𝑡𝑡𝑕𝑒𝑠𝑚𝑜𝑜𝑡𝑕𝑒𝑑𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑚𝑎𝑡𝑟𝑖𝑥𝑋̃𝑓𝑟𝑜𝑚 (14).

11. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑚𝑎𝑡𝑟𝑖𝑥𝑆_𝑖𝑗^𝑋𝑓𝑟𝑜𝑚 (13).

12. 𝑂𝑏𝑡𝑎𝑖𝑛𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑦𝑖
𝑥 ;.

13. 𝑓𝑜𝑟𝑒𝑝𝑜𝑐𝑕 = 1,2,… , 𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑜

14. 𝑈𝑝𝑑𝑎𝑡𝑒𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.

15. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑡𝑕𝑒𝑗𝑜𝑖𝑛𝑡𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.

16. 𝑒𝑛𝑑𝑓𝑜𝑟.

V. CONCLUSION

This research presents aninnovative methodology termed the Dual Autoencoder Learning Method for Attribute

Network Representation. This method integrates two autoencoder channels, each dedicated to distinct aspects of

network representation. The initial channel utilizes a multi-hop attention mechanism, facilitating the assimilation of

high-order neighborhood information for nodes. By computing importance weights for neighboring nodes, this

mechanism ensures the inclusion of both local and global structural elements within the network, enhancing the model's

capacity to capture intricate relationships across different scales. This innovative approach seeks to advance the

effectiveness of attribute network representation learning through a dual-channel autoencoder framework.

In contrast, the second autoencoder channel adopts a low-pass filtering strategy, iteratively extracting attribute

information from the neighborhood of nodes based on the network's structural characteristics. The dual autoencoder

architecture facilitates the dedicated learning of both network structure and attributes. Subsequently, an adaptive fusion

process brings these learned representations together, fostering interactivity and mutual influence between the two

information types. This effectively mitigates the existing limitations in network representation learning, specifically the

lack of interaction between structural and attribute information, as well as the absence of joint learning for node

representation incorporating both forms of information.

5.1 Implications and Applications

The proposed Dual Autoencoder Learning Method for Attribute Network Representation (DANRL) holds several

important implications and offers a wide range of applications across various domains:

1. Improved Network Representation:

DANRL addresses the limitations of traditional network representation methods by simultaneously capturing both

structural and attribute information, thereby offering a more comprehensive representation of complex

networks.Enhanced network representations are invaluable for numerous applications, including social network

analysis, recommendation systems, and biological network analysis, where understanding both network structure and

attributes is crucial.

2. Enhanced Machine Learning Models:

The Dual Autoencoder Learning Method for Attribute Network Representation (DANRL) exhibits substantial potential

to enhance the efficacy of machine learning models dependent on network representations, including tasks like node

classification, link prediction, and community detection. Its applicability extends to real-world scenarios such as fraud

detection in financial networks, content recommendation in social networks, or the identification of disease-related

genes in biological networks. By leveraging DANRL, these applications can benefit from improved accuracy and

robustness in extracting meaningful patterns and relationships within diverse network structures.

www.theijbmt.com 67|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

3. Network Anomaly Detection:

DANRL's capacity to capture both local and global structural information positions it as a valuable tool for anomaly

detection in networks. Its application extends to detecting fraudulent activities in financial transactions, identifying

network intrusions in cybersecurity, or uncovering unusual behavior in social networks. By leveraging DANRL, these

applications can benefit from a holistic understanding of network structures, enabling more accurate identification and

timely intervention in anomalous patterns or activities.

4. Attribute Network Integration:

DANRL facilitates the integration of attribute information into network analysis, which is essential in scenarios where

nodes possess rich attribute data.It finds utility in recommendation systems, personalized marketing, and customer

segmentation, where incorporating user attributes can lead to more tailored and effective strategies.

5. Multimodal Data Fusion:

DANRL's adaptive fusion of structural and attribute embeddings allows for the integration of multimodal data sources,

enhancing the representation of diverse data types.This can be applied in multimedia content analysis, sensor networks,

and healthcare, where information from various sensors or modalities needs to be combined for a comprehensive

analysis.

6. Scalable Network Analysis:

DANRL's ability to capture high-order neighborhood information improves the scalability of network analysis by

reducing the computational complexity.It can be employed in large-scale social networks, web graphs, and

transportation networks to extract meaningful insights without overwhelming computational demands.

In summary, the DANRL algorithm has significant implications for advancing network representation

learning, and its applications span a wide spectrum of domains, ranging from improving machine learning models to

solving real-world problems in various fields. Its ability to seamlessly integrate structural and attribute information

makes it a valuable tool for researchers and practitioners in diverse domains seeking to extract meaningful insights from

complex networks.

REFERENCES

[1] P. Hamilton, W. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Advances in Neural

Information Processing Systems 2017.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in International

Conference on Learning Representations 2017.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social representations,” in ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining 2014.

[4] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: A simple and general method for semi-supervised

learning,” in Association for Computational Linguistics, pp. 384-394, 2010.

[5] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad, “Collective classification in network

data,” AI Magazine, vol. 29, no. 3, pp. 93-106, 2008.

[6] T. Shinozaki, “Competitive Learning Enriches Learning Representation and Accelerates the Fine-tuning of

CNNs,” arXiv:1804.09859v1 [cs.LG], 2018.

[7] T. N. Kipf and M. Welling, “Representation learning on graphs: Methods and applications,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 32, no. 11, pp. 2454-2472, 2021.

www.theijbmt.com 68|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

[8] A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509-512,

1999.

[9] T. Mitchell, Machine Learning, McGraw-Hill Education, 1997.

[10] M. E. J. Newman, “Modularity and community structure in networks,” Proceedings of the National Academy of

Sciences, vol. 103, no. 23, pp. 8577-8582, 2006.

[11] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using Gaussian fields and harmonic

functions,” in International Conference on Machine Learning 2003.

[12] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining 2016.

[13] Y. Bengio, D. Schuurmans, J. L. Ba, and C. Szepesvari, “A neural probabilistic language model,” The Journal of

Machine Learning Research, vol. 3, pp. 1137-1155, 2003.

[14] E. Huang, R. Socher, C. Manning, and A. Ng, “Improving Word Representations via Global Context and Multiple

Word Prototypes,” Association for Computational Linguistics, 2012.

[15] E. Oja, “Neural networks, principle components, and subspaces,” International Journal of Neural Systems, vol. 1, pp.

61-68, 1989.

[16] P. Turney and P. Pantel, “From frequency to meaning: Vector space models of semantics,” Journal of Artificial

Intelligence Research, vol. 37, pp. 141-188, 2010.

[17] P. Turney, “Distributional semantics beyond words: Supervised learning of analogy and paraphrase,”

Transactions of the Association for Computational Linguistics (TACL), vol. 1, pp. 353-366, 2013.

[18] P. Sen, “Collective classification in network data,” AI Magazine, vol. 29, no. 3, pp. 93-106, 2008.

[19] M. Ahmed, X. Liao, and A. T. S. Chan, “Network embedding in dynamic graphs,” in Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.

[20] T. Mikolov et al., “Distributed representations of words and phrases and their compositionality,” Neural

Information Processing Systems, 2013.

[21] T. Mikolov et al., “Extensions of recurrent neural network language model,” in Acoustics, Speech and Signal

Processing (ICASSP), IEEE International Conference, pp. 5528-5531, 2011.

[22] T. Kocmi and O. Bojar, “An Exploration of Word Embedding Initialization in Deep-Learning Tasks,”

arXiv:1711.09160v1 [cs.CL], 2017.

[23] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed language model,” Advances in Neural Information

Processing Systems, vol. 21, pp. 1081-1088, 2009.

[24] M. Ahmed, X. Liao, and A. T. S. Chan, “Network embedding in dynamic graphs,” Proceedings of the 11th ACM

International Conference on Knowledge Discovery and Data Mining, 2018.

[25] R. Monti, F. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein, “Geometric deep learning on graphs

and manifolds using mixture model CNNs,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

www.theijbmt.com 69|Page

The International Journal of Business Management and Technology, Volume 8 Issue 2 March-April 2024
ISSN: 2581-3889

[26] D. Zügner and S. Günnemann, “Adversarial attacks on neural networks for graph data,” in Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), 2018.

[27] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “On the

properties of neural machine translation: Encoder-decoder approaches,” in Proceedings of SSST-8, Eighth Workshop

on Syntax, Semantics and Structure in Statistical Translation, 2014.

[28] A. Trivedi, N. C. Krishnan, and T. Suel, “Predicting temporal dynamics of social media cascades,” in Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), 2017.

[29] R. Roman, R. Precup, and D. David, “Second Order Intelligent Proportional-Integral Fuzzy Control of Twin Rotor

Aerodynamic Systems,” Procedia Computer Science, vol. 139, pp. 372-380, 2018.

[30] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language model,” in International workshop on

artificial intelligence and statistics, 2005.

[31] X. Dong, L. Tang, Y. Chang, and X. Zhu, “Link prediction and recommendation across heterogeneous social

networks,” in Proceedings of the Eighth International Conference on Web Search and Data Mining, 2015.

